

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

# T760**(E)**(M29)T

# NATIONAL CERTIFICATE

# INDUSTRIAL ELECTRONICS N2

# (8080602)

# 29 March 2019 (X-Paper) 09:00–12:00

This question paper consists of 5 pages and a formula sheet of 2 pages.

# DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

# NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N2 TIME: 3 HOURS MARKS: 100

## **INSTRUCTIONS AND INFORMATION**

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Approximate ALL final answers accurately to THREE decimal spaces.
- 5. Write neatly and legibly.

## **QUESTION 1**

Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (1.1–1.10) in the ANSWER BOOK.

- 1.1 The transistor is a three-terminal device that consists of three PN-junctions.
- 1.2 An uneven or non-sinusoidal graph is solved by means of the mid-ordinate rule.
- 1.3 In an AC circuit the inductive reactance of the inductor is directly proportional to the frequency.
- 1.4 The collector current of a transistor will increase when the forward-bias voltage of the base emitter is decreased.
- 1.5 A P-type semiconductor material is formed by using a pentavalent atom.
- 1.6 A diode acts as a conductor when it is forward biased and as an inductor when it is reverse biased.
- 1.7 The synchro stator is composed of three windings spaced 180° apart.
- 1.8 The ohmmeter must be connected in parallel across the circuit or component of which the resistance needs to be measured.
- 1.9 A transducer is a device that converts one form of energy into another.
- 1.10 A parallel circuit is also known as a voltage divider.

(10 × 1) **[10]** 

## **QUESTION 2**

2.1 Define the following SI units:

| 2.1.1 | Ampere | (3) |
|-------|--------|-----|
|       |        |     |
| 2.1.2 | A volt | (2) |

- 2.2 A resistor of 3 ohms is connected in series with two resistors in parallel, having values of 3 ohms and 6 ohms. This combination is connected across a 10 volts direct-current supply.

| 2.2.1 | Draw the circuit.                           | (1) |
|-------|---------------------------------------------|-----|
| 2.2.2 | Calculate the total current in the circuit. | (4) |

(3)

| 2.2.3 | Calculate the total current in the circuit if the series resistor is short-<br>circuited. | (4)         |
|-------|-------------------------------------------------------------------------------------------|-------------|
| 2.2.4 | Calculate the power consumed by each resistor in the parallel                             |             |
|       |                                                                                           | (0)<br>[20] |

#### **QUESTION 3**

3.1 Define the term *in phase.* 



Refer to the sketch above and calculate:

| 3.2.1                    | The impedance                          | (3)                  |
|--------------------------|----------------------------------------|----------------------|
| 3.2.2                    | The capacitive reactance               | (3)                  |
| 3.2.3                    | The voltage drop across each component | (4)                  |
| 3.2.4                    | The phase angle                        | (2)                  |
| Draw the phasor diagram. |                                        | (2)<br>[ <b>17</b> ] |

## **QUESTION 4**

3.3

- 4.1 Discuss the following processes:
  - 4.1.1 Donor doping
  - 4.1.2 Acceptor doping

#### Ĉâ

(2 × 2) (4)

4.2 Draw a two-dimensional diagram of the germanium atom, where the electrons move in a three-dimensional space. Number the orbits/shells and calculate the number of electrons on each shell. Also indicate the number of protons in the nucleus.

(8)

| 4.3 | Name THREE properties of a Zener diode. | (6)  |
|-----|-----------------------------------------|------|
|     |                                         | [18] |

-5-

# **QUESTION 5**

| 5.1 | Draw a clearly labelled schematic diagram indicating the biasing voltage (the biasing of the transistor) of a PNP and an NPN transistor.                                            | (6)  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5.2 | Draw the characteristic curve of a transistor, showing the saturation region, active region and the cut-off region. Also explain how the transistor can be operated in each region. | (10) |
|     |                                                                                                                                                                                     | [16] |

# **QUESTION 6**

| 6.1        | Draw a circuit symbol and briefly discuss the operating principle of the light dependent resistor (LDR).                         | (3)                |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| 6.2        | Show, by means of a neat graph, the difference between <i>underdamping</i> , <i>overdamping</i> and <i>critical damping</i> .    | (3)                |  |
| 6.3        | A network produces a 200 W output from a 20 mW input.                                                                            |                    |  |
|            | Calculate the gain or loss of the network in <i>bels</i> and in <i>decibels</i> .                                                | (6)<br><b>[12]</b> |  |
| QUESTION 7 |                                                                                                                                  |                    |  |
| 7.1        | State Lenz's law.                                                                                                                | (3)                |  |
| 7.2        | Show the principle of Lenz's law by using the transformer principle on which a synchro mechanism and a servo-mechanism operates. | (4)<br><b>[7]</b>  |  |

TOTAL: 100

#### INDUSTRIAL ELECTRONICS N2

#### FORMULA SHEET

#### **Direct-current theory**

$$V = I \cdot R \qquad P = V \cdot I \qquad P = \frac{V^2}{R}$$

$$P = I^2 \cdot R \qquad R_T = R_I + R_2 \qquad \frac{1}{R_T} = \frac{1}{R_I} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$R_T = \frac{R_I \times R_2}{R_I + R_2} \qquad I_I = \frac{R_2}{R_I + R_2} \times I_T$$

## **Alternating-current theory**

$$t = \frac{1}{f}$$

$$e = E_m Sin \theta$$

$$e = E_m Sin \theta$$

$$i = I_m Sin \theta$$

$$i = I_m Sin \theta$$

$$V_{rms} = 0,707V_{max}$$

$$I_{rms} = 0,707I_{max}$$

$$V_{ave} = 0,637V_{max}$$

 $I_{ave} = 0,637I_{max}$ 

Form factor = 
$$\frac{rms value}{average value}$$

 $Crest \ factor = \frac{maximum \ value}{rms \ value}$ 

| $E_{ave} = \frac{e_1 + e_2 + e_3 + e_4 + e_5 + \dots + e_n}{n}$                    | $I_{ave} = \frac{i_1 + i_2 + i_3 + i_4 + i_5 + \dots + i_n}{n}$                    | $\omega = 2\pi f$                       |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|
| $E_{rms} = \sqrt{\frac{e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 + \dots + e_n^2}{n}}$ | $I_{rms} = \sqrt{\frac{i_1^2 + i_2^2 + i_3^2 + i_4^2 + i_5^2 + \dots + i_n^2}{n}}$ |                                         |
| $X_L = 2\pi f L$                                                                   | $X_{c} = \frac{1}{2\pi fC}$                                                        | $V = I \cdot R$                         |
| $V_T = \sqrt{V_R^2 + V_C^2}$                                                       | $V_T = \sqrt{V_R^2 + V_L^2}$                                                       | $V_T = \sqrt{V_R^2 + (V_L \sim V_C)^2}$ |
| $Z = \sqrt{R^2 + (X_L \sim X_C)^2}$                                                | $Z = \sqrt{R^2 + X_L^2}$                                                           | $Z = \sqrt{R^2 + X_c^2}$                |
| $I = \frac{V_T}{Z}$                                                                | $I_R = \frac{V_T}{R}$                                                              | $I_L = \frac{V_T}{X_L}$                 |
| $I_C = \frac{V_T}{X_C}$                                                            | $I_{T} = \sqrt{I_{R}^{2} + I_{X}^{2}}$                                             | $I_x = I_L \sim I_C$                    |
| $V_L = I \cdot X_L$                                                                | $V_C = I \cdot X_C$                                                                | $Z = \frac{V}{I_T}$                     |

Copyright reserved

Please turn over

$$\theta = \tan^{-1} \frac{I_x}{I_R}$$
  $\theta = \cos^{-1} \frac{I_R}{I_T}$   $\theta = \cos^{-1} \frac{R}{Z}$ 

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

# Measuring instruments

#### Transistors

$$I_E = I_C + I_B$$

#### **Decibel ratios**

$$N = 10\log\frac{P_{oUT}}{P_{IN}} \qquad \qquad N = 20\log\frac{I_{oUT}}{I_{IN}} + 10\log\frac{R_{oUT}}{R_{IN}} \qquad \qquad N = 20\log\frac{V_{oUT}}{V_{IN}} + 10\log\frac{R_{IN}}{R_{oUT}}$$

If R<sub>IN</sub>=R<sub>OUT</sub>:

$$N = 20 \log \frac{V_{OUT}}{V_{IN}} \qquad \qquad N = 20 \log \frac{I_{OUT}}{I_{IN}}$$

#### Resistance

$$R = \frac{\rho \ell}{A} \qquad \qquad A = \frac{\pi d}{4}$$